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Properties common to many large-scale networks, independently of 
their origin and function:

1. The degree and betweenness distribution are decreasing 
functions, usually power-laws. 
2. The distances scale logarithmically with the network size

Network models

Nlogl

scale - free

ll ld

3. The clustering coefficient does not seem to depend on the
network size, and is larger than the clustering coefficient  of 
comparable random graphs

There are two model families proposed to explain these properties:
Small world network models and scale-free network models.

klog
gl ≈ small world

Benchmark 1: regular lattices

One-dimensional lattice: 

2/1NLl ≈≈

 constC constkNl ==≈  ,   ,

Two-dimensional lattice: 

nodes insidefor  const.  ==
15
6C

nodesinsidefor  const.  == 6k

The average path-length varies as 
Constant degree (coordination number), constant clustering 
coefficient.

DNl /1≈

D-dimensional lattice: 

Benchmark 2: random graph theory

Erdös-Rényi algorithm - Publ. Math. Debrecen 6, 290 (1959)

• fixed node number N
• connecting pairs of nodes 
with probability p

Expected clustering coefficient: 

Expected path length: klog
Nloglrand ≈

N
k

pCrand ==

k1Nkk
1Nrand )p1(pC)k(P −−

− −≅Expected degree distribution:

Path length and order in real networks

klog
Nloglrand =

N
k

Crand =

Real networks have short distances like random graphs yet show 
signs of local order. 
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Small-world networks

Watts-Strogatz model - D. Watts, S. Strogatz, Nature 393, 440 (1998)

• lattice with K neighbors   
i d ith

Real networks resemble both regular lattices and random graphs –
perhaps they are in between.

• rewire edges with 
probability p

,
K2

Nl =
)1K(4
)2K(3C

−
−

= ,
Klog
Nlogl ≈

N
KC ≈

Is there a regime with small l and large C?

Transition from a lattice to a small world

lattice         small world          random

There is a broad interval of p over which                        but    )0()( CpC ≅ )1()( lpl ≅

The onset of the small-world behavior 
depends on the system size

)pKN(f
K

N)p,N(l
d/1

≈
d is the dimension of 
the lattice

=)u(f
1uconst << if 

1uu/uln >>if
lattice - like

random graph - like

3)p1)(0(C)p(C −=

These results cannot be directly compared to most real networks 
because the rewiring probability p is not known.

1uu/uln >> if  random graph like

The transition point depends on the rewiring probability,
the size of the network and the average degree.

Degree distribution of a small-world 
network 

Kk =

Rewiring does not change the average degree, but 
modifies the degree distribution.

P(k) depends on the rewiring parameter p, but is 
always centered around <k>.

Degree distribution similar to that of a random graph, with 
exponentially small probability for very highly connected nodes.
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Ex. 1
A variant of the Watts-Strogatz model adds random edges to a 
regular lattice. Start with a 1D lattice where every node has degree 
K . For each existing edge of a node, add an edge with a probability 
p. The endpoint of the edge is selected randomly from all other 
nodes. How many edges do you expect the graph will have after 
edge addition?

Ex. 2 
H d t th d di t ib ti ill l k lik ft dHow do you expect the degree distribution will look like after edge
addition? Will it be symmetrical or not?

n2/pNKn
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iii nmKk ++=

starting point endpoint

m2/Kmm
2/K )p1(pC)m(P −−≅

Minimum: K, peak: K+pK

The scale-free degree distribution 
indicates a heterogeneous topology 

New models are needed to reproduce this feature.

We need to uncover the mechanisms 
responsible for the scale-free P(k)

• random graphs
• small-world networks
• scale-free random graphs

Real networks continuously change

Static (number of nodes fixed)

• random graphs
• small-world networks

Homogeneous

Scale-free degree distribution - the nodes are not equivalent

We need to model the evolution of networks, not just their topology.

A simple model of network assembly and 
evolution (BA model) 

Start with a small seed of m0 nodes and m0(m0-1)/2 edges.

• growth: a node and  m edges added at every step

• preferential attachment:
jj

i
i k

kk
Σ
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Price, J. Amer. Soc. Inform. Sci. 27, 292 (1976)
Barabási and Albert, Science 286, 509 (2000)
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General properties of the network

• nr. of nodes:

• nr. of edges:

• average degree: m2E2k →=

tmN 0 +=

tm
2

)1m(mE 00  +
−

=

average degree:

• degree distribution:

m2
N

k →

3
t Ak)k(P −

∞→⎯⎯→⎯

Although the network grows, the degree distribution becomes 
stationary.

The degree of “old” nodes increases by acquiring new 
edges. The probability of an old node with degree ki receiving 
a new edge is

Analytical determination of P(k)

t2
k

k
km)k(m i

j j

i
i ≈=

∑
Π

⎧ k
Degree increase:

Choices: 
follow the increase in the number of nodes with 
degree ki (rate equation approach)
follow the increase in time in ki (continuum theory)

⎪⎩

⎪
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⎧

=
                    otherwise   

   prob.   with 

0
t2

k1k
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i∆

Change in average number of nodes with degree k

Rate equation approach

m,k

k
k

k1kk

)t(kN
)t(kN)t(N)1k(m

dt
dN δ+−−

=
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−

k-1       k

first node

number of edges

k      k+1

Plug in:

t)t(NlimN)t(N)k(P ktk ∞→
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<k>

normalizationnumber of edges
of new node

m,k

k
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=
∑

The rate equation leads to a recursive relationship between P(k) 
and P(k-1)

Degree distribution
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P. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)
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Stationary power law with an exponent 3=γ
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Ex. 1
Start from a seed of two nodes connected by an edge. At each step, 
add a new node, and connect it by a single edge to a preexisting 
node. 

Let the probability of selection be directly proportional with the 
degree of the “old” node. (Is there an easy way to do this?) 

C ti i th h til h 15 d D ib thContinue growing the graph until you reach 15 nodes. Describe the 
graph (average degree, degree distribution,
clustering coefficient, connectivity, maximum distance).

Ex. 2 
How will the properties of the graph change if at each step a new 
node and two new edges are added?

mdki

Model A

growth                  preferential attachment

Π(ki) : uniform

)
m
kexp(

m
e)k(P

1tm
m)k(A

dt
dk

0
i

i

−=

−+
== Π

7=m

1=m
3=m

5=m

Characteristic degree scale: m  

Model B

growth                  preferential attachment

Nt 5=

Fixed N, edges connect a randomly selected node with
a preferentially selected node

N
mt2k

N
1

t2
k

1N
N

N
1)k(A

dt
dk i

i
i

=
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=+= Π

P(k) : power law (initially) ⇒ Gaussian

Nt =

Nt 40=

BA algorithm with directed edges 
New edges are directed from the new to the old nodes

mk in =

0
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i mi for  mk >=
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The degree exponent of the directed scale-free network is 2 !
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How do the other network measures 
compare with real networks?

Average path length Clustering coefficient

N
NC

2)(ln
≈

Average distances smaller in the BA model than in equivalent random graphs.
but not as small as in scale-free random graphs.

Clustering coefficient decreases with network size.

N
Nl

lnln
ln

≈

B. Bollobás and O. Riordan, in Handbooks of Graphs and Networks (2003)

Cohen et al, in Handbooks of Graphs and Networks (2003)

Evolving network models Evolving network models 
The scale-free model is only a minimal model.
Makes the simplest assumptions:
• linear growth

• proportional preferential attachment

Does not capture
i ti i th h f th d di t ib ti

m2k =

ii kk ∝Π )(

variations in the shape of the degree distribution
variations in the exponent of the power-law region
the size-independent clustering coefficient

Hypothesis: the basic mechanisms need to be augmented
by the incorporation of

addition of edges without new nodes 
edge rewiring, removal 
node removal
constraints or optimization principles

PPreferential attachment in real networks 

Internetcitation

no pref. attach

linear pref attach

∑
<

=
kK

)K()k( Πκ

neurosci.
actor collab.

linear pref. attach

1  ,)( ≤+≈Π ααkAk

1. Sublinear preferential attachment leads to a stretch-
exponential degree distribution.

Consequences of nonlinear preferential 
attachment

A - initial attractiveness

1  ,)( ≤+≈Π ααkAk

2. Initial attractiveness only shifts the degree exponent.

directed network, starting point is 2

P. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)

m
A2in +=γ

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

( )β)kk(exp)k(P 0−≈
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1. Copying mechanism
directed network
select a node and an edge of this node
attach to the endpoint of this edge

2. Walking on a network
directed network

Mechanisms for preferential attachment 

the new node connects to a node, then to every
first, second, … neighbor of this node

3. Attaching to edges
select an edge
attach to both endpoints of this edge

4. Node duplication
duplicate a node with all its edges
randomly prune edges of new node

Growth constraints and aging cause 
cutoffs 

• Finite lifetime to acquire 
new edges

ν−−∝∏ )()( iii ttkk• Gradual aging: 

νγ   withincreases 

S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842 (2000) 

L. A. N. Amaral et al., PNAS 97, 11149 (2000)

Additional processes also change the 
degree exponent 

γ−+≈ )()( 0kkkP ),,(, mqpfk0 =γ• mp new edges
• mq edges rewired

R. Albert, A.-L. Barabási, Phys. Rev. Lett  85,  5234 (2000)

S. N. Dorogovtsev, J. F. F. Mendes, Europhys. Lett. 52, 33 (2000)

• c edges added or removed

c21
12in +

+=γ

A model with high clustering coefficient
• Each node of the network can be either active or inactive.
• There are only m active nodes in the network at any instance.
1. Start with m active, completely connected nodes
2. At each timestep add a new node (active) that connects to m

active nodes.
3. Deactivate one active node 1)()( −+∝ jid kakP

K. Klemm and V. Eguiluz, Phys. Rev. E 65, 036123 (2002)

2== am

10== am

makkP /2)( −−≈

kak +≈Π )(
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• Start with a completely connected graph with five nodes (one 
“central” , four peripheral

• Make four copies of the graph,  keep the original in the center. 
Connect the four peripheral nodes of each copy to the central 
node of the original.

• Make four copies of the graph, again connect peripheral 
nodes to the central node. 

A deterministic scale-free model

5-clique 

A deterministic scale-free model

5-clique 

E. Ravasz, A.-L. Barabasi, Phys Rev E 67, 026112 (2003)

connect peripheries 
to central node 

Ex. 1
How does the number of nodes increase as a function of time steps?

Ex. 2
How does the degree of the central node increase in time?

E 3Ex. 3 
How does the number of edges increase as a function of time steps?

Ex. 4 
Can you identify the highest degree nodes?

Properties of the model
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Clustering coefficient                       independent of network size

341 ln/lnk)k(P −−∝

60.C ≈
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Hierarchical structure
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Average clustering coefficient of 
nodes with degree k
Also observed in various cellular networks – sign  of hierarchical, 
modular architecture
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E. Ravasz et al., Science 297, 1551 (2002)

Lessons learned from evolving network 
models 

1. There is no universal exponent characterizing all networks.

2. The origins of the preferential attachment might be system-
dependent.

3. It is generally true that networks evolve.

4. Modeling real networks:
• identify the processes that play a role
• measure their frequency from real data
• develop dynamical models that capture these 

processes 


