Network models — random graphs

Properties common to many large-scale networks, independently of
their origin and function:
1. The degree and betweenness distribution are decreasing
functions, usually power-laws.

2. The distances scale logarithmically with the network size
|~ log N

- log(k)
3. The clustering coefficient does not seem to depend on the

network size
C <k>

As though all these networks were part of the same family/class.



Random networks

The average distance and clustering coefficient only depend on the
number of nodes and edges in the network.

This suggests that general models based only on the number of
nodes and edges in the network could be successful in describing
the properties of an “expected” (characteristic) network.

Uniformly random network: distributes the edges uniformly among
nodes.

Probabilistic interpretation:

There exists a set (ensemble) of networks with given number of
nodes and edges. Select a random member of this set.

What are the expected properties of this network? — studied by
random graph theory.



Ex. 1

Start with 10 isolated nodes. For each pair of nodes, throw with a dice,
and connect them if the number on the dice is 1. Describe the graph you
obtained. How many edges are in the graph? Is it connected or not? What
IS the average degree and the degree distribution?

EX. 2
Now connect node pairs if the number on the dice is 1 or 2. How is the
graph different from the previous case?

EX. 2
How many edges do you expect a graph with N nodes would have if each
edge is selected with throwing with a dice?



Random graph theory

Erd6s-Rényi algorithm - Publ. Math. Debrecen 6, 290 (1959)
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Random graph theory studies the expected properties of graphs with
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The properties of random graphs depend
onp

Properties studied:
IS the graph connected?
does the graph contain a giant connected component?
what is the diameter of the graph?
does the graph contain cliques (complete subgraphs)?

Probabilistic formulation: what is the probability that a graph with
N nodes and connection probability p is connected?

Increase p from O to 1. Some of these properties appear suddenly,
at a threshold p.(N)
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Subgraphs of a random graph

Consider a subgraph with n nodes and e edges.
Expected number of of these subgraphs in a graph with N nodes

and connection prob. p
We can permute

n! < the n nodes in any
N Re "
w'\' Fi 3 way we want...
Ways of selecting Probability of bUt identic_al
n nodes from N having e edges (isomorphic) graphs

do not count

Isomorphic graphs: there exists a
one-to-one mapping of the nodes
iIn such a way that if (and only if)
node i and j are connected in one
then their images I’ and j’ are also
connected.




Special subgraphs

Consider a subgraph with n nodes and e edges.
Expected number of subgraphs with n nodes and e edges in a
graph with N nodes and connection prob. p

. . Nt N"p°
E(X)=Cnp: o P
a a

If the connection probability is a function of the number of the
nodes, we can find the condition of having a non-vanishing
number of subgraphs.

lim p(N)N"¢ %0

N—> o

Ex. Find the condition of having a non-vanishing number of
trees, cycles and completely connected subgraphs.



Evolution of a random graph

Assume that the connection probability is a power-law of N, p=cN"*
Assume that z increases from —o to 0
Look for trees, cycles (circuits) and cliques in the graph.
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Clusters in a random graph

* For p< N~ the graph contains only isolated trees.
«If p=cN™ withc<1 the graph has isolated trees and cycles.

At p=cN ™ withc=1 agiant connected component appears.
* The size of the giant connected component approaches N rapidly

as C Increases. ‘o
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Node degrees in random graphs

<

Kk
ways to select k
nodes from N-1

- average degree: <k> _ ZNE ~ pN

» degree distribution:

P(k)=Cy_ p“(1-p)" ™"

™~

probability of
probability of missing N-1-k
having k edges edges

Most of the nodes have approximately the same degree.
The probability of very highly connected nodes is exponentially

smalill.



Distances in random graphs

Random graphs tend to have a tree-like topology with almost
constant node degrees.

* nr. of first neighbors: N, = (k)

- nr. of second neighbors: N, = (k)’

e estimate maximum distance:

&N _ log N
1+|le<k> =N ‘ Imax - |0g<k>

This scaling was proven by Chung and Lu, Adv. Appl. Math 26,
257 (2001).



There Is no local order in random graphs

Measure of local order: C, = i
k.(k —1)/2

Since edges are independent and have the same probability p,

~ ki(ki_l) <k>

The clustering coefficient of random graphs is small.



Are real networks like random graphs?

As quantitative data about real networks becomes available, we can
compare their topology with that of random graphs.
Starting measures: N, <k> for the real network.

Determine |, C and P(k) for a random graph with the same N and <k>.
log N (k)
Irand ~ Crand = p:—
log(k) N

F)rand(k)g CIEI—l pk(l_ p)N_l_k

Measure |, C and P(k) for the real network. Compare.



flog<ks>

Path length and order in real networks

_log N

Irand — |Og<k>
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The degree distribution of the WWW is a

PDUt(k)

power-law
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R. Albert, H. Jeong, A.-L. Barabasi, Nature 401, 130 (1999)
A. Broder et al., Comput. Netw. 33, 309 (1999)



Power-law degree distributions were found in
diverse networks

Internet, router level Actor collaboration
)
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The power-law degree distribution
Indicates a heterogeneous topology

k
log P{K)

The average degree gives Large variability,
J Jree g the average degree not informative,

the characteristic scale (value) ' oo racteristic scale for the degree

of the degree.
Scale-free



ldea: generate random graphs with
a power-law degree distribution

Fixed N, P(k)=Ak™7, k<K

Network assembly - random edges, but enforcing the right P(k)

1
K
1

2., K7

ZK:P(k)zl, = A=

k—7+1

K ZK
<k>=Y kP(k), = <k>=<L
k=1 z K™

1

The number of edges increases as y decreases.



Constructing graphs with
a given degree distribution

Configuration model:

» choose a degree sequence N(k)=N P(k)

e give the nodes k “stubs” according to N(k)
e connect stubs randomly

M. E. J. Newman, S. H. Strogatz, and D. J. Watts,
Phys. Rev. E 64, 026118 (2001)

Ex. Construct a graph with 10 nodes and degree sequence
N(1)=4, N(2)=3, N(3)=2, N(4)=1.
What is a necessary condition for the graph construction?



Theory of general random graphs

Looks at a characteristic member of the ensemble of graphs with

given degree distribution.

Seeks the answers to the same guestions as random graph theory

* Isthe graph connected?
 does the graph contain a giant component?
 what is the diameter of the graph?

 what is the clustering coefficient of the graph?
The theoretical concept needed for the analysis is the generating

function.
One important result: A giant connected component exists if the

graph is sufficiently heterogeneous. <k2>/<k> > 9



Connectivity of scale-free random graphs

Given: N, P(k)=k™ for k<x

Graph properties depend on the degree exponent 7

 giant cluster: ¥y <3.47
 connected: y <2

W. Aiello, F. Chung, L. Lu, Proc. 32th ACM Theor. Comp., 171 (2000)
M. E. J. Newman, S. H. Strogatz, D. J. Watts, Phys. Rev. E 64, 026118 (2001)



Average path length of scale-free random
graphs
Network: N, P(k)~k™ for k<xk

_InN+B
A

M. E. J. Newman, S. H. Strogatz, D. J. Watts, Phys. Rev. E 64, 026118 (2001)
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Clustering coefficient of scale-free
random graphs

C

_<k> <k?>—<k>2Y
N < k>*

The second term depends on the variance of the degree distribution.
P(k)= k™ C ~ N -Gr-Nir-1)
For »<7/3 C increases with N.

M. E. J. Newman, SIAM Review 45, 167 (2003)
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MNetwork Size {k) K Y ot Yin  Lreat rand ¢ pow Reference NI,
WWWwW 325729 4.51 900 245 21 112 832 477 Albert, Jeong, and Barabasi 1999 1
WwWw 4107 7 238 21 Kumar ef al., 1999 2
WWW 2 10° 7.5 4000 272 21 16 B85 76l Broder et al., 2000 3

WWW, site 260 000 1.94 Huberman and Adanuc, 2000 4
Internet, domain®  3015-4389 342-376 30-40 2.1-22 2.1-22 4 6.3 52 Faloutsos, 1999 5
Internet, router® 358E 2.57 30 248 248 1215 875 747 Faloutsos, 1999 &
Internet, router® 150000 2.66 ai 24 24 11 128 747 Govindan, 2000 7

Movie actors® 212250 2878 900 23 23 45 365 401 Barabasi and Albert, 1999 8
Co-authors, SPIRES* 56627 173 1100 1.2 1.2 4 212 195 Newman, 2001b 9
Co-authors, neuro.* 209293 11.54 400 21 21 6 501 386 Barabasi er al., 2001 10
Co-authors, math.* T0975 39 120 2.5 2.5 95 82 653 Barabasi er al., 2001 11
Sexual contacts® 2810 3.4 34 Liljeros er al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 22 32 332 289 Jeong e al, 2000 13
Protein, 5. cerev.™ 1870 2.39 24 24 Jeong, Mason, et al., 2001 14
Ythan estuary® 134 8.7 35 1.05 105 243 226 171 Montoya and Sole, 2000 14
Silwood Park® 154 4.75 27 1.13 1.13 34 323 2 Montoya and Sole, 2000 16
Citation 78333 8.57 3 Bedner, 1998 17

Phone call 53x10° 316 21 21 Adello er al, 2000 18

Words, co-occurrence® 460902 7013 27 27 Ferrer i Cancho and Sole, 2001 19

Words, synonyms™ 22311 13.458 28 2.8 Yook et al., 2001b 20

Expectations:

(k)>1  giant connected component, (K)=INN  connected

y £3.47 giant connected component, ¥ <2 connected



Exponential random graphs

“Exponential” does not refer to the degree distribution but to

the model construction!

This is a statistical method for generating a of graph with N

nodes by specifying a distribution function over all graphs with N nodes.

1. Select a set of informative network measures (e.g. number of edges,
number of triangles, degree distribution)
2. Then select a network from the ensemble of all graphs using the

probability
P(G)~exp _Zﬂigi
I
B, — parameters, g — network measures
3. Estimate the coefficients such that an observed (real) network
corresponds to the most likely graph in that ensemble — maximum

likelihood estimation

Markov graphs: edges that do not share a node are independent
Further reading: Frank & Strauss 1986, David Hunter’s webpage



