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Properties common to many large-scale networks, independently of 
their origin and function:

1. The degree and betweenness distribution are decreasing 
functions, usually power-laws. 
2. The distances scale logarithmically with the network size

Network models – random graphs

Nlogl

3. The clustering coefficient does not seem to depend on the
network size

As though all these networks were part of the same family/class.
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The average distance and clustering coefficient only depend on the 
number of nodes and edges in the network.

This suggests that general models based only on the number of 
nodes and edges in the network could be successful in describing 
the properties of an “expected” (characteristic) network.

Random networks

Uniformly random network: distributes the edges uniformly among 
nodes. 
Probabilistic interpretation: 
There exists a set (ensemble) of networks with given number of 
nodes and edges. Select a random member of this set.
What are the expected properties of this network? – studied by 
random graph theory.

Ex. 1
Start with 10 isolated nodes. For each pair of nodes, throw with a dice,
and connect them if the number on the dice is 1. Describe the graph you
obtained. How many edges are in the graph? Is it connected or not? What
is the average degree and the degree distribution?

E 2Ex. 2
Now connect node pairs if the number on the dice is 1 or 2. How is the
graph different from the previous case?

Ex. 2
How many edges do you expect a graph with N nodes would have if each
edge is selected with throwing with a dice?

Random graph theory

Erdös-Rényi algorithm - Publ. Math. Debrecen 6, 290 (1959)

• fixed node number N
• connecting pairs of nodes 
with probability p

Random graph theory studies the expected properties of graphs with 
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The properties of random graphs depend 
on p

Properties studied: 
is the graph connected?
does the graph contain a giant connected component?
what is the diameter of the graph?
does the graph contain cliques (complete subgraphs)?

Probabilistic formulation: what is the probability that a graph withProbabilistic formulation: what is the probability that a graph with
N nodes and connection probability p is connected?
Increase p from 0 to 1. Some of these properties appear suddenly, 
at a threshold  pc(N)
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Consider a subgraph with n nodes and e edges. 
Expected number of of these subgraphs in a graph with N nodes 
and connection prob. p

Subgraphs of a random graph
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Ways of selecting Probability of 

We can permute 
the n nodes in any 
way we want...

but identical 
(isomorphic) graphs

Isomorphic graphs: there exists a 
one-to-one mapping of the nodes 
in such a way that if (and only if) 
node i and j are connected in one 
then their images i’ and j’ are also
connected.

n nodes from N having e edges (isomorphic) graphs 
do not count

Consider a subgraph with n nodes and e edges. 
Expected number of subgraphs with n nodes and e edges in a 
graph with N nodes and connection prob. p

If the connection probabilit is a f nction of the n mber of the

Special subgraphs
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If the connection probability is a function of the number of the 
nodes, we can find the condition of having a non-vanishing 
number of subgraphs.

Ex. Find the condition of having a non-vanishing number of 
trees, cycles and completely connected subgraphs.
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Evolution of a random graph

Assume that the connection probability is a power-law of N,
Assume that z increases from         to 0 
Look for trees, cycles (circuits) and cliques in the graph.

zcNp =
∞−

Appearance thresholds:

The graph contains cycles of any length if 1z −≥
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Clusters in a random graph

• For                the graph contains only isolated trees.

• If the graph has isolated trees and cycles.

• At a giant connected component appears.

• The size of the giant connected component approaches N rapidly 

as c increases.
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Node degrees in random graphs

• average degree:

• degree distribution: 
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Most of the nodes have approximately the same degree.
The probability of very highly connected nodes is exponentially 
small.
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ways to select k
nodes from N-1 probability of 

having k edges

probability of 
missing N-1-k
edges

Distances in random graphs

• nr. of first neighbors:

• nr. of second neighbors:

kN1 ≅

Random graphs tend to have a tree-like topology with almost 
constant node degrees.

2kN ≅nr. of second neighbors: 

• estimate maximum distance:
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This scaling was proven by Chung and Lu,  Adv. Appl. Math 26, 
257 (2001).

There is no local order in random graphs

Since edges are independent and have the same probability p, 

Measure of local order: 
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The clustering coefficient of random graphs is small.
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Are real networks like random graphs?

As quantitative data about real networks becomes available, we can
compare their topology with that of random graphs. 
Starting measures: N, <k> for the real network.
Determine l, C and P(k) for a random graph with the same N and <k>.

Nloglrand ≈
k

pCrand ==

Measure l, C and P(k) for the real network. Compare.

klogrand N
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Path length and order in real networks

klog
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Real networks have short distances like random graphs yet show 
signs of local order. 

The degree distribution of the WWW is a 
power-law
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R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999)

A. Broder et al., Comput. Netw. 33, 309 (1999)

Power-law degree distributions were found in  
diverse networks

Actor collaborationInternet, router level
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A.-L. Barabási, R. Albert, Science 286, 509 (1999)

R. Govindan, H. Tangmunarunkit, IEEE Infocom (2000)

)(kP

k
110 210 110310 210 310010



5

The power-law degree distribution 
indicates a heterogeneous topology 

The average degree gives
the characteristic scale (value) 
of the degree.

Large variability,
the average degree not informative, 
no characteristic scale for the degree 
Scale-free

Idea: generate random graphs with 
a power-law degree distribution

Fixed

Network assembly - random edges, but enforcing the  right 
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Configuration model: 
• choose a degree sequence N(k)=N P(k)
• give the nodes  k “stubs” according to N(k)
• connect stubs randomly 

Constructing graphs with  
a given degree distribution

Ex. Construct a graph with 10 nodes and degree sequence 
N(1)=4, N(2)=3, N(3)=2, N(4)=1.
What is a necessary condition for the graph construction?

M. E. J. Newman, S. H. Strogatz, and D. J. Watts, 
Phys. Rev. E 64, 026118 (2001)

Theory of general random graphs

Looks at a characteristic member of the ensemble of graphs with

given degree distribution.

Seeks the answers to the same questions as random graph theory 
• is the graph connected?
• does the graph contain a giant component?
• what is the diameter of the graph?

what is the clustering coefficient of the graph?• what is the clustering coefficient of the graph?

The theoretical concept needed for the analysis is the generating

function. 

One important result: A giant connected component exists if the

graph is sufficiently heterogeneous. 22 ≥kk
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Connectivity of scale-free random graphs

Given:                                for 

Graph properties depend on the degree exponent
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• giant cluster:
• connected:

M. E. J. Newman, S. H. Strogatz, D. J. Watts, Phys. Rev. E 64, 026118 (2001)

2≤γ
473.≤γ

W. Aiello, F. Chung, L. Lu, Proc. 32th ACM Theor. Comp., 171 (2000)

Average path length of scale-free random 
graphs

Network: γ−≈ kkPN )(,   
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M. E. J. Newman, S. H. Strogatz, D. J. Watts, Phys. Rev. E 64, 026118 (2001)

• qualitative agreement
• worse than a random
graph

Clustering coefficient of scale-free 
random graphs
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The second term depends on the variance of the degree distribution. 

M. E. J. Newman, SIAM Review 45, 167 (2003)

p g

For                     C increases with N.
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7/3<γ Expectations:
giant connected component,                         connected
giant connected component,                         connected473.≤γ 2≤γ
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Exponential random graphs 
“Exponential” does not refer to the degree distribution but to 
the model construction!
This is a statistical method for generating a of graph with N
nodes by specifying a distribution function over all graphs with N nodes.

1. Select a set of informative network measures (e.g. number of edges, 
number of triangles, degree distribution)

2. Then select a network from the ensemble of all graphs using the 
probability ⎞⎛probability

βi – parameters, εi – network measures

3. Estimate the coefficients such that an observed (real) network
corresponds to the most likely graph in that ensemble – maximum
likelihood estimation

Markov graphs: edges that do not share a node are independent
Further reading: Frank & Strauss 1986, David Hunter’s webpage
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