Properties of real networks: degree
distribution
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Nodes with small degrees are most frequent.
The fraction of highly connected nodes decreases, but is not zero.
Look closer: use a logarithmic plot.
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Plotting power laws
and exponentials

Note: these are plots of
functions and not degree
distributions
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and out-degree distribution of the WWW
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Usage: the degree distribution scales as a power law

R. Albert, H. Jeong, A.-L. Barabasi, Nature 401, 130 (1999)
A. Broder et al., Comput. Netw. 33, 309 (1999)



Degree distributions in networks of science

collaborations
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M. E. J. Newman, Phys. Rev. E 64, 016131 (2001)

A.-L. Barabasi et al., cond-mat/0104162 (2001)



Power-law degree distributions were found in
diverse networks

Internet, router level Actor collaboration
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R. Govindan, H. Tangmunarunkit, IEEE Infocom (2000)
A.-L. Barabasi, R. Albert, Science 286, 509 (1999)



Metabolic networks have a power-law
degree distribution
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H. Jeong et al., Nature 407, 651 (2000)



Cleaning up degree distributions

Often it is difficult to determine the best fit to the points that make up
a degree distribution.
Methods of data cleanup:

1. logarithmic binning: bin the k range; use bins of exponentially
Increasing size

2. Display the cumulative degree distribution

P(k<K)= ZK:P(k)or

k:kmin

P(k>K)=1-P(k<K)

Ex. Determine the degree distribution and

cumulative degree distribution of the graph
on the right.



If the
(noncumulative)
degree
distribution aligns
with a power law
with exponent
a>1,

the cumulative
degree
distribution

will align with a
power law with
exponent o-1.
Does not apply
for a=1!

Probability
that node has
degree X.

P(x) =

Probability that a

node has a degree

bigger than X.

P(X >X) = CX

cX “
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log(x)
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Power grid has exponential degree distribution

nodes: generators,
] power stations

] edges: power lines

P (k> K)oexp(0.5K)
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R. Albert, I. Albert, G. L. Nakarado, Phys. Rev. E 69, 025103(R) (2004)
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Path length and order in real networks
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Apparent scaling with the network size and average degree - as though
these different networks were members of the same family.




Distribution of betweenness centrality

Coauthorship
Protein interaction

Metabolic netw.
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PB(g) ~ 9_2

K. 1. Goh et al., PNAS 99, 12583 (2002)



Betweenness centrality (load) distribution of
the power grid
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R. Albert, I. Albert, G. L. Nakarado, Phys. Rev. E 69, 025103(R) (2004)



Network Nodes Edges Nical Npand2SD Zscore | Nieal Nrand £SD Zscore | Neeal Nrand£SD  Z score
Gene regulation X Feed- X Bi-fan
(transcription) v forward
Y loop
Vv Z w
Z
E. coli 424 519 |40 +E3 10 203 47+x12 13
S. cerevisige® 685 1,052 |70 11+4 14 1812 30040 41
Neurons X Feed- X Y Bi-fan X Bi-
V forward ¥ N parallel
Y loo Y. Z
\7 = Z W N ¥
Z w
C. eleganst 252 509 125 90+10 3.7 127 55+13 5.3 227 35+10 20
Food webs X Three X Bi-
v chain ¥ N parallel
Y Y, Z
Vv N\ ¥
Z w
Little Rock 92 984 3219 312050 21 7295 2220+210 25
Electromic circuits X Feed- X Y Bi-fan ¥ X \ Bi-
(forward logic chips) v forward Y 7 parallel
Y loop N Y
v Z W o
Z
515850 10,383 14,240 | 424 2+2 285 1040 1.4 1200 480 2+1 335
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional multipliers) /1 \ node node
feedback feedback
Y&<— Z loop Z W 7 <—W loop
5208 122 189 10 1+1 9 4 11 38 5 11 5
s420 252 399 20 1+1 18 10 T+l 10 11 1%1 11
s838% 512 819 40 1+1 38 22 1+1 20 23 1+1 25
World Wide Web X Feedback X Fully X Uplinked
® with two / N connected / ‘\ muitual
$ muitual v€<> 7 triad Y>> 7 dyad
dyads
Z
nd.edu§ 325,729 1.46e6 | 1.1e5 2e3 +1e2 800 6.8¢6  Sedtde2 15,000 1.2e6  led+2e2 5000




Mixing patterns in networks

Mixing in social networks
assortative: people prefer to associate with others who are like them
disassortative: people prefer to associate with others who are different

Mixing with respect of node degree:
assortative: high degree nodes tend to be connected to high degree
nodes
disassortative: high degree nodes tend to be connected to low degree
nodes
Focus on edge i, denote the excess in-degree of its starting point with j;
and the excess out-degree of its endpoint with k;
Mixing is quantified by the correlation between j; and k; over all i

Zjiki—ZjiZki./N
(ij—(Zji )Z/NJO.S(ZK‘Z_(ZK )Z/Nj

0.5

Positive correlation - assortative, Negative correlation - disassortative
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Social networks tend to be assortative, technological and biological

netwsork Ly pe size t | assortativity r | error o, | ref.
physics coauthorship wid ipected el 0300 (IR &
biclogy coauthorship undirected | 1520251 0.127 0.0004 &
mat hematics cosuthorship | undirected 26332 0.120 0.002 ¥
film actor collaborations undirected 449913 0.208 0.0002 c
company directors undirected TET3 0.276 0.004 d
student relationships undirected ET3 —0.023 0.037 e
email address books directed 16881 0.092 0.004 f
porarer grid wnd irected 1541 — UL UL U013 v
Internet. wndirected 10697 —0.1839 0.002 h
World-Wide Web directed 269 504 —0.067 0.0002 i
software dependencies directed 3162 —0.016 0.020 j
protein nteractions und irected 211b —0. 1560 U0l k
metabalic netwark ind irected TEH —0.240 0.007 |
neural netwaork directed 307 —0.226 0.016 [
marine food web directed 134 —0.263 0.037 i
freshwater food web directed a2 —0.326 0.021 0

networks tend to be disassortative.

Possible causes of assortativity: attraction of similars, group affiliation
Possible cause of disassortativity: service relationships (e.g. directories)

M. E. J. Newman, Phys. Rev. E (2003)



Universality in large-scale networks

The degree distribution follows a decreasing function, usually a
power-law.

The betweenness centrality distribution is also decreasing.
Both indicate heterogeneity and the existence of hubs.

The distances scale logarithmically with the network size
log N
| =~
log(k)
The clustering coefficient does not seem to depend on the network

size and it seems to be proportional with the average degree
C <k>

Frequent subgraphs — not universal but common to several networks



