
Topological perturbation of complex 
networksnetworks

Perturbations in complex systems can deactivate some of the edges or 
nodes. 
Edge loss: the edge is deleted

Effects on the global topology:

Edge loss: the edge is deleted
Node loss: the node and all its edges are deleted

Effects on the global topology:
• increase of path lengths, 
• separation into isolated 
clusters.

More connected  network - less effect of an edge removal
But bridges are definite points of vulnerability!
The effect of a node removal depends on the number and p
characteristics of its edges.



Resilience to perturbations

Topological resilience studied in the literature:

the remaining nodes are still connected.g
the average distance does not increase.

Ex Propose other measures of resilienceEx. Propose other measures of resilience.

Testing resilience to incremental damage:
remove edges/nodes one by one, and look at
• the size of the giant connected component
• the average distance between nodes in the giant connected g g

component

Ex What factors affect the topological resilience of a network?Ex. What factors affect the topological resilience of a network?



Review: components in a random graph
Erdős-Rényi (uniform) random graph:
•If                      the graph contains only isolated trees.
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• If the graph has isolated trees and cycles.

• At a giant connected component appears.
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• The size of the giant connected component approaches N 

rapidly as c increases.

• The graph is connected if N/Nlnp >The graph is connected if 

Random graph with degree distribution P(k):

N/Nlnp >

g p g ( )
• A giant connected component exists if 22 ≥kk

Ex. How is this related to topological resilience?



Edge removal in random graphs

Start with a connected ER random graph with conn. prob. p.

Remove a random fraction f of the edges.

N/Nlnp >

Expected result: an ER graph with conn. prob.  p(1-f)

Connected if 

For a broad class of starting graphs there exists a threshold edge

N/Nln)f1(p >−

For a broad class of starting graphs, there exists a threshold edge
removal probability such that if a smaller fraction of edges is
removed the graph is still connected.                                     

B. Bollobas, Random Graphs, 1985



Node removal

Removing a node deactivates all its edgesRemoving a node deactivates all its edges.    

We can expect that the effect of the node removal will depend

on the number of edges it had.on the number of edges it had.

The size of the connected component will decrease at least by one.

Assume we have two networks with the same number of nodes

and edges, and remove a randomly chosen fraction f of the nodes.

Can the two networks’ resilience be different?



Breakdown transition in general random 
hgraphs 

Consider a random graph with arbitrary P(k0)
A giant cluster exists if each node is connected to at least 
two other nodes.
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Application: ER random graphs 
Consider a random graph with connection probability p such that 
at least a giant connected component is present in the graph.

Find the critical fraction of removed 
nodes such that the giant connected S
component is destroyed.
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The higher the original average degree, the larger damage the 
network can survive.

Q: How do you explain the peak in the average distance?



Breakdown threshold of scale-free 
d hrandom graphs

Scale-free random graph with
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Infinite scale-free networks with           do not break down under 
random node failure.

3<γ

Q. Do you think there is a flip side of this resilience to random 
node removal?



Numerical simulations of network resilience 
Two  networks with equal number of nodes and edges
• ER random graph
• scale-free network (BA model)

Study the properties of the network as an increasing fraction f of the y p p g
nodes are removed. 
Node selection: random (errors)

the node with the largest number of edges (attack)the node with the largest number of edges (attack)

Measures: the fraction of nodes in the largest connected cluster, S
the average distance between nodes in the largest  
cluster, l

R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)



Scale-free networks are more error tolerant, 
but also more vulnerable to attacksbut also more vulnerable to attacks 

• squares: random failure• squares: random failure
• circles: targeted attackS

Failures: little effect on 

l

the integrity of the 
network. 
Attacks: fast breakdown



Real scale-free networks show the same 
d l b h idual behavior 
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• break down if 5% of the nodes are eliminated selectively (always 
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f

y ( y
the highest degree node)
• resilient to the random failure of 50% of the nodes.

Similar results have been obtained for metabolic networks and 
food webs.



1 Rank order the nodes by your expectation for the effect of their1. Rank order the nodes by your expectation for the effect of their 
removal. What were your criteria in doing so?   

2.  For each node, determine what is the effect of its removal
on the size of the connected component. 

3.  Do the results match your expectations?



Case study: NA powergrid

• 14,000 nodes: 1600 generators, 10,200 transmission substations, 
2200 distribution substations

• 19,700 edges: high-voltage transmission lines
• Exponential degree distribution, long-tailed betweenness 

distribution

• The role of the power grid is to route power from generators to 
distribution substations (and then to customers)( )

• Connected network: power from any generator is in principle 
accessible to any substation

• 15% of edges are bridges• 15% of edges are bridges.

• Q: Are there more appropriate measures of network resilience for 
the power grid?p g



Resilience of the NA powergrid

• The relevant question is whether the distribution substations 
receive enough power

• Studied measure: how many generators can feed a given 
distribution substation

• Average connectivity – the fraction of generators able to feed a 
given substation, averaged over substations
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• Connectivity loss                                      expressed as a 
percentage

• Generator removal will definitely lead to connectivity loss, 
transmission substation removal not necessarily
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transmission substation removal not necessarily.



Connectivity loss for generator removaly g

R. Albert, I. Albert, G.N. Nakarado, Phys. Rev. E  (2004)



Connectivity loss for transmission
substation removalsubstation removal

load-based (current)
Load =
BetweennessBetweenness
centrality

Highest damage if the next substation to be removed is the currentHighest damage if the next substation to be removed is the current 
highest-load substation



Relevant

Resilience of the ABA signal transduction network
Relevant 
connectivity: the 
connection of 
source (ABA) tosource (ABA) to 
sink (closure)

At least four 
separate 
ABA-closure
paths, through 

2Ca2+, through 
actin, through pHc
and through 

l tmalate.

4 nodes (e.g depolar, actin, pHc, malate) need to be simultaneously 
disr pted to block all ABA clos re pathsdisrupted to block all ABA- closure paths.

Q: what other connectivity measures could be considered?



Limitations of topological resilience

• The most relevant measure of connectivity may not be y y
the size of the giant connected cluster

• The effects of removing a node or edge propagate 
through the network
– E.g. cascading failure on the power grid, gene mutationE.g. cascading failure on the power grid, gene mutation
– Depends on the dynamical properties of the network

• The network topology still determines the boundaries of 
propagating failure



Case study: Modeling cascading failures in the 
North American power gridNorth American power grid

• Three types of substations within the power grid: generators, 
transmitters, distributors

• Assume that power is routed through the shortest paths starting 
from generators and ending with distributors.  Thus the g g
betweenness (load) of a transmission substation is assumed to be a 
proxy for the power flowing through it.

• Assume that each transmitter has a tolerance  (ability to handle 
increased load) α; so the maximum bearable load is C=αL0.

• Node loss will cause the (reversible) overload of frequently used 
transmission nodes and the rerouting of power.

P. Crucitti, V. Latora, and M. Marchiori, Phys. Rev. E 69, 045104R (2004)



Network measures
• Efficiency:Efficiency: 
Initial edge efficiency eij=1. Degrades  at overload of either i or j : 
eij

*= eijCi/Li, returns to 1 if Ci>Li
Path efficiency : harmonic sum of edge efficiencies over the pathεPath efficiency      : harmonic sum of edge efficiencies over the path

Network efficiency                                         over the shortest paths from 
generators to distributing stations
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V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)
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One node is removed, then the node loads are recalculated, then the
edge/path/network efficiencies are updated, then the node loads are
recalculated … until efficiency stabilizes. 



Single Node Random Removals

Above a critical
tolerance value, the
removal of a single
node has little effect
on network; however 
below this critical 
tolerance value, 20%
global efficiency loss
possible.

Upper line: no efficiency loss after removing a node in this category.
Lower curve: tolerance - dependent efficiency lossp y



Three separable classes of nodes

Nodes whose removal 
causes little or no damagecauses little or no damage 
(nearly 60% of nodes)

Nodes that follow a 
tolerance dependenttolerance-dependent
curve
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Nodes that follow the 
curve, then jump to no 
damage behavior R. Kinney , P. Crucitti , R. Albert , V. Latora, 

E Ph J B 46 101 107 (2005)Eur. Phys. J. B 46 , 101-107 (2005)



Low Damage Node Characteristics

• Correlation between low degree, low load and little damage (see filled 
circles)

• 90% of no damage nodes have betweenness below 1000 and degree< 
3 for generators and load below 2000  and degree =2 for transmitters  

• 72% of no-damage generators have degree 1 thus are expected to 
i i ifi d icause insignificant damage to power routing



Resilience of cellular interaction networks

• Perturbation: knockout mutation of a gene. This means 
that all products of this gene (mRNA, protein) will be 
b tabsent.

• Measured outcome: phenotype (e.g. growth behavior) of 
the mutant strain.

• The literature aims to correlate topological measures of 
the gene product (usually a protein in a protein 
i t ti t k) ith th h t f thinteraction network) with the phenotype of the gene 
mutation. 

• Caveats
– The gene knockout may be incompletely represented by the loss 

of a protein node in a protein-protein interaction network
Th ff t f k k t t th h th t k– The effects of knockouts propagate through the network



Systematic deletion of S.cerevisiae genes

• 5196 gene knockout yeast strains
• Studied growth in rich media 

and altered environmental 
conditions

• 19% of genes essential – without 
them the yeast does not survive 
even in rich medium

• 15% of knockouts show slow 
growth in a rich medium

• 15% of strains show morphological alteration – different cell 
size/shape

Giaever et al. 2002 Nature 418: 387



Correlating yeast gene essentiality and protein
degreeg

Start with yeast protein interaction network 
and knowledge of essential genes.
The network topology displays theThe network topology displays the 
error tolerant/attack susceptible behavior 
seen in other networks.

Green – random node removal

Group proteins by degree, determine 
the percentage of essential genes (that 
encode these proteins) in each group

Red – removal of highest degree 
node at each step.

encode these proteins) in each group.

Highly connected proteins are more essential

H. Jeong et al., Nature 411, 41 (2001)



Essential – lethal after deletion 
Toxicity modulating – growth inhibition of
mutant after exposure to DNA damaging

Essential subgraph 
has smallest average 

agent
No phenotype
Construct subgraphs of these three node 
types

g
path length.

types.
All have giant connected components 
with >60% of nodes

Essential 
subgraph hassubgraph has 
highest 
average 
degree

High sensitivity corresponds to higher Distribution of each node’s 
di t f

g y p g
connectivity, degree and shorter 
characteristic path length

average distance from 
every other reachable node.

Said, et al. 2004 PNAS 101: 18006



• Nodes metabolites edges

Resilience of metabolic networks
Edge removal• Nodes – metabolites, edges –

reactions
• Gene knockouts – removal of the 

reaction catalyzed by enzyme
• Consider edge removal (=gene

Edge removal

• Consider edge removal (=gene 
knockout) and node (metabolite) 
removal

• Determine the lethality fraction of 
edge or node removal fromedge or node removal from 
nodes of given degree 

• Relatively narrow range of 
lethality fraction in case of edgelethality fraction in case of edge 
removal

• Very highly connected 
metabolites are 100% lethal

Node removal

metabolites are 100% lethal, 
but…

• The lethality fraction of some 
less connected nodes is higher 
than the lethality fraction of morethan the lethality fraction of more 
connected nodes.

Mahadevan et al. 2005 Biophys. Jour. 88: L07-09


