The structure of molecular & cellular
networks

To be able to construct and analyze a cellular network, we need to
clearly define what we identify as a node and what we represent
with an edge.

The nodes and edges have to be at least similar to each other,
e.g. represent the same type of cellular component (protein,
chemical) or the same type of interaction (mass transfer,
regulation).

We can, and often need to, define different types of nodes and
edges.



Life at the cellular level

Cellular functions rely on the
coordinated action of Interacting -
components.

Proteins
— provide structure to cells and tissues
— work as molecular motors
— sense chemicals in the environment
— drive chemical reactions
— regulate gene expression
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Frequently defined molecular interaction networks

gene regulatory
network

protein-protein
interaction
network

external

. signal transduction
signals

network
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Examples of intracellular networks

1. Protein interaction networks

nodes: proteins
edges: protein-protein interactions (binding), modification of a

protein

2. Biochemical reaction networks

nodes:
reactants (substrates) or products of the reactions
enzymes — catalyze the reactions
reactant-enzyme complex (“reaction node”)
edges:
reactions
catalysis (regulation)



Examples of intracellular networks (cont.)

3. Gene regulatory networks

nodes:
gene, mMRNA, protein

edges:
transcription, translation, regulation

4. Signal transduction networks

nodes:
proteins, molecules

edges:
reactions and processes (e.g. ligand-receptor

Interaction)



Example of high-throughput experimental
methods to map interactions

Transcription factors bind to the

promoter regions of genes. Transcription I 8j Activation Domain (0
] . . Activator (TA) Binding Domain (BD)

They have a DNA binding domain and

an aCtivation domain. Promoter Gene

In the two-hybrid method the two
domains are separated, and fused

to two proteins. g X mg
If the two proteins interact by binding, (

the transcription factor activates the

\J
expression of a reporter gene. AD
X
Systematic experiments with all B
proteins in a given organism lead to Promoter Reporter

genome-wide protein interaction maps.



Mapping of cellular interaction networks

Experimental advances allow the construction of genome-wide
cellular interaction networks
 Protein networks:

Individual studies:

Uetz et al. 2000, Ito et al. 2001, Krogan et al. 2006, Yu et al. 2008 — S.
cerevisiae,

Giot et al. 2003 — Drosophila melanogaster , Li et al. 2004 — C. elegans
Rual et al. 2005 - Human interactome

High throughput methods:
Co-affinity purification + mass spectrometry
Yeast two hybrid

Databases:

Database of Interacting Protein (DIP), the Biomolecular Interaction Network
(BIND), the Munich Information Center for Protein Sequences (MIPS), the
Human Protein Reference Database (HPRD), and the Yeast Proteome
Database (YPD)



Mapping of cellular interaction networks (cont.)

Metabolic networks

Experimental methods:

Enzyme characterizations: Protein and DNA microarrays

Metabolite identification: isotope labeling

Flux quantification: Mass spectroscopy

Databases: Kyoto Encyclopedia of Genes and Genomes (KEGG), Ecocyc, MetaCyc

Transcriptional regulatory networks

Individual studies: Shen-Orr et al. 2002 — E. coli, Guelzim et al 2002, Lee et al. 2002
- S. cerevisiae,

Davidson et al. 2002 — sea urchin
Experimental methods: DNA footprinting, chromatin immunoprecipitation (ChlP)

Databases: Transcription Factor Database (TRANSFAC), Regulon Database
(RegulonDB), KEGG

Signal transduction networks
Ma’ayan et al. 2005 — mammalian hippocampal neuron
Databases: KEGG, Science STKE



Protein interaction maps now contain
thousands of nodes and edges

Ito (yeast): 8868 interactions between 3280 proteins

Uetz (yeast): 4480 interactions, 2115 proteins

Giot (Drosophila): 4780 interactions among 4679 proteins
Li (C. elegans): 5534 interactions, 3024 proteins

Rual (human): 2800 interactions, 8300 proteins

Although usually tested in a given
bait/prey setting, protein interactions
are considered symmetrical

Many untested interactions — problem

All networks have giant connected
components.

The topological properties of diverse
protein interaction networks are
similar.

H. Jeong et al.Nature 411, 41-42 (2001)
S.-H Yook, Z.N. Oltvai, A.-L. Barabasi, Proteomics 4, 928 (2004)



Exercise

* Which graph theoretical measures will be useful to analyze
these networks?

« What information is not incorporated in these protein-
protein interaction maps?




log(P(k))+k/k .

Degree distribution of the yeast protein
network
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Degree distribution of C. elegans and D.
melanogaster protein networks
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Comparison of yeast interaction networks
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Average path length larger, short cycles
more abundant than in randomized networks
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Randomization: swap the endpoints of two edges, node degrees stay the same.



Probability density

Not all interactions are simultaneously active

Calculate the correlation between the

Cell cycle

| =77 : expression time-course of genes encoding

4] the first neighbors of hub proteins.

3.

f: Two peaks — two different types of hubs.

0l e Party hubs are inside connected modules
Sporulation that interact simultaneously. Date hubs

5{ N=9 connect different modules.
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Networks of chemical reactions —usual

visualization
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Representation of chemical reactions+

regulation
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Tri-partite representation of metabolic network

D-erythrose D-sedoheptulose D-xylulose
4-phrgsphate m 7-phosphate m 5-phgsphate }'

D-fructose D- cheraldehyde D-ribose
6-phosphate ] 39?’ hosphate | [ 5-phosphate ]
(" 5-phospho- )

alpha-D-ribose |

m . 1-diphosphate |

AMP 2.7.6.1 [ ATP J

-

-

* Node types:
— Metabolites (substrates or products), open rectangles
— No distinction between metabolites and coenzymes
— Metabolite-enzyme complexes, black rectangles
— Enzymes, open ovals

« Edges:
— Substrate to complex or complex to product

— Symmetrical edges between enzyme and complex



Ex. A traditional representation of the glycolysis pathway is given on the left.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Glucose

ATP
lc ADP L ATP

Glucose 6-phosphate

Fructose 6-phosphate

PFK

ATP -1 ATP
ADP

Fructose l,ibisphosphatc

DHAP

}

G3p

NAD*
NADH+H*: «Pi

G3p

!

G3p

NAD*
Pi—» C NADH+H*

1,3-bisphosphoglycerate  1,3-bisphosphoglycerate

ADP :
ATP

ADP
Ic TP +2 ATP

3-phosphoglycerate 3-phosphoglycerate

!

!

2-phosphoglycerate 2-phosphoglycerate

H,0+—
PEP
ADP :
ATP

Pyruvate

I_..Hzo

PEP
lc ADP +2 ATP
ATP

Pyruvate

Draw a graph of the pathway.

What improvements can be done
to this graph?



Reaction Stoichiometry

Reaction Pathway o _
Stoichiometric

)
A+B—C+D (1) Matrix (S) S
A+D—E (2) 3
B+C — F (3) ¥

(Substrates/Metabolites)
M m OO W >

Sij = Number of molecules of substrate i participating in reaction |

Sj <0 If substrate i is a reactant in reaction |
S > 0 If substrate I Is a product in reaction |
1=1,2,...,N = # of substrates = # rows
]=1,2,...,M =# of reactions = # columns

Reactions
1 2
-1 -1
-1 0

1 0

1 -1

0 1

0 0



EX. Represent these reactions by a bi-partite
graph.

A+B—C+D (1)
A+D—E (2)
B+C—F (3)



Network Representation — Substrate Graph

Reaction Pathway RXn-2 Rxn-1 Rxn-3

A A B B
A+B—C+D (1)
B+C—F (3)

D D C C

> One type of node: @ Substrate Node

Substrate Graph
A B

» Un-directed edges

» Each reaction represented as a

cligue E .

A. Wagner & D. Fell, Proc. Roy. Soc. 268 (2001) D C



Network Representation — Reaction Graph

Reaction Pathway Reaction Graph
1
A+B—C+D (1)
A+D—E (2)
B+C—F (3)
2 3

> One type of node: [l Reaction Node
» Un-directed edges

» An edge between two reactions if they share at least one
substrate in common

Three alternate network representations for the
same reaction pathway !



Directed
Substrate Graph

A B

D C

Connect two substrates if there exists a 2-
edge path in the bi-partite graph between
them

Bi-partite Graph

C D E F
2 3
Directed Reaction
Derived Graph
1
2 3

Connect two reactions if there exists at
least one 2-edge path in the bi-partite
graph between them



Key Properties of Metabolic Networks
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Distances in Metabolic Networks

Paths defined to connect substrates (reactants) to products, the average is
calculated on the reachable pairs only.
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Clustering-degree relation in metabolic networks
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Degree distributions in metabolite and reaction
networks

Construct non-directed projections to metabolite and reaction networks

Rank vs. degree plot, similar to P(k>K).
The degree exponent y=|slope|+1

All reactions (+)
lone

reaction
madules

[
1R
b

s
=

2 2
10 10 Degred

- )
10 10 Dagreel®

Undirected substrate network  Undirected reaction network

Tanaka, Phys. Rev Lett. 94, 168101 (2005)



Gene regulatory networks

transcriptional
activation

translation

post-translational

modification

protein, modified

- protein,

transcriptional inhibition

 nodes: MRNAs (ovals), proteins (boxes)

e edges: interaction or regulation
e regulatory edges acting on edges — similar to catalysis
« edges can be activating or inhibiting

Often-used simplification: merge all gene products into one.



tailed, in-degree distribution more
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Other features of transcriptional regulatory
networks

* No strongly connected component in E. coli and yeast - a
unidirectional regulation mode.

e The subgraphs found by following the paths that start from
non-transcriptionally regulated genes have relatively little
overlap - distinct environmental signals tend to initiate
distinct transcriptional responses.

e The source — sink distances are small in networks,

e.g. the longest regulatory chain has only four (in E. coli)
and five (in S. cerevisiae) edges.



Autoregulation

- ==

Single Input Motif

=9

LEWU1

BAT1

ILvz2

Multi-Component Loop

Regulatory motifs

Feedforward Loop

Memi

YAPS

1
¥

Yaph

—

Multi-Input Motif

Swi4

v

RPFL28

Regulator Chain

--..

ASH1

Regulators (TFs), blue circles
Genes, red rectangles
Dashed edges mean translation

Feedforward loop:

convergent direct and

Indirect regulation; noise

filter

Single input motif:

one TF regulates

several genes; temporal
program

Multi-input motif: combinatorial
regulation



(a)

(b)

(c)

(d)

Regulatory themes
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Condition-dependent transcription sub-networks
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Ex. Draw a network corresponding to this verbal

description of a signaling pathway.
— A protein ligand FASL binds to the receptor FAS. The
Interaction activates intracellular protein FADD, which
In turn activates the proteolysis of procaspase-8, giving
active caspase-8. Caspase-8 leads to the proteolytic
activation of caspase-3, activating programmed cell

death.



ABA signal transduction network

Red: enzymes
Blue: transport
Orange: small
molecules
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Signal transduction network of the
hippocampal CA1 neuron

Data (binary interactions) collected form the experimental literature
System of interacting cellular components involved in phenotypic
behavior

Extracellular
Edges can be directed or ligands (33)
undirected (neutral) L
Directed edges are activating and othar
or inhibitory protains (63)
o

In and out degree distribution m— Central

pticn signading a lon channels
bI’Oad talled machinery (37) network (311) (1)
Highest degree nodes: |ml£iﬂféf‘-ﬁf?23] ryapgifiﬁé’ - ‘lnacﬂﬁ‘e"i? .;ESJ\I

MAPK, CaMKII, PKA and PKC

Ma’ayan et al, Science 309, 1078 (2005)



Signal propagation as links per step starting at
a specific ligand

LIGAND‘
CHEMICAL J % STEP
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Motif abundance, homeostasis, and plasticity

Feedback loops & \,. bifans £><£

®
Feed-forward loops ./ \,. scaffolds 4 .\

Rapid-change ligands engage more motifs in fewer steps;
At early steps, more FFL than expected; at later steps, more +FBL

than expected

Motif counts increase linearly with steps for all regulators — preferential
paths to key effectors;

Positive and negative motifs are balanced for glutamate and BDNF -
homeostasis;

More positive than negative FBL and FFL in NE — long- term info storage
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Graph analysis uncovered common
architectural features of cellular networks

(Weakly) Connected,

short path length,
heterogeneous (approximately power law degree distribution),

conserved interaction motifs

Can you think of reasons and/or consequences of these features
In addition to what we already talked about?



Importance of a dynamical understanding

Only subsets of the genome-wide interaction networks are active in a
given external condition

— dynamical modularity of protein interaction networks
— endogeneus and exogeneus transcriptional
subnetworks

Network topology needs to be complemented by a description of
network dynamics — states of the nodes and changes in the state

First step - pseudo-dynamics: propagation of reactions in
chemical(interaction) space, starting from a source (signal)

Complete dynamical description is only feasible on smaller networks
(modules):

Signal transduction in bacterial chemotaxis, NF-kB signaling module,
the yeast cell cycle, Drosophila embryonic segmentation
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