
The structure of molecular & cellular The structure of molecular & cellular 
networksnetworksnetworksnetworks

To be able to construct and analyze a cellular network, we need to 
clearly define what we identify as a node and what we represent 
with an edge.

The nodes and edges have to be at least similar to each other, 
e g represent the same type of cellular component (proteine.g. represent the same type of cellular component (protein, 
chemical) or the same type of interaction (mass transfer, 
regulation).

We can, and often need to, define different types of nodes and 
edges.



Life at the cellular level

• Cellular functions rely on the 
coordinated action of interactingcoordinated action of interacting 
components.

• ProteinsProteins 
– provide structure to cells and tissues
– work as molecular motors
– sense chemicals in the environmentsense chemicals in the environment
– drive chemical reactions
– regulate gene expression

• Interconnections between components 
are the essence 
f li i David Goodsell/ Science Photo Library

receptor proteins, enzymes, 
ribosomes, DNA 

of a living process. David Goodsell/ Science Photo Library
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Examples of intracellular networksExamples of intracellular networkspp

1.   Protein interaction networks
d t inodes: proteins

edges: protein-protein interactions (binding), modification of a 
protein

2.   Biochemical reaction networks
nodes:nodes:

reactants (substrates) or products of the reactions
enzymes – catalyze the reactions

t t l (“ ti d ”)reactant-enzyme complex (“reaction node”)
edges: 

reactions 
catalysis (regulation)



Examples of intracellular networks (cont.)Examples of intracellular networks (cont.)

3.    Gene regulatory networks
nodes: 

gene, mRNA, protein 
edges:

transcription, translation, regulationp , , g

4.    Signal transduction networks
nodes:nodes: 

proteins, molecules
edges: 

reactions and processes (e.g. ligand-receptor 
interaction)



Example of high-throughput experimental 
methods to map interactions

Transcription factors bind to theTranscription factors bind to the 
promoter regions of genes. 
They have a DNA binding domain and 
an activation domain.

In the two-hybrid method the two 
domains are separated, and fused
to two proteins.
If the two proteins interact by binding, 
the transcription factor activates the 
expression of a reporter geneexpression of a reporter gene.

Systematic experiments with all 
proteins in a given organism lead toproteins in a given organism lead to 
genome-wide protein interaction maps.  



Mapping of cellular interaction networks
Experimental advances allow  the construction of genome-wide p g
cellular interaction networks
• Protein networks: 

Individual studies:
Uetz et al 2000 Ito et al 2001 Krogan et al 2006 Yu et al 2008 SUetz et al. 2000, Ito et al. 2001, Krogan et al. 2006, Yu et al. 2008 – S. 
cerevisiae, 
Giot et al. 2003 – Drosophila melanogaster , Li et al. 2004 – C. elegans
Rual et al. 2005 - Human interactome

High throughput methods:
Co-affinity purification + mass spectrometry
Yeast two hybridYeast two hybrid

Databases:
Database of Interacting Protein (DIP), the Biomolecular Interaction Network 
(BIND) the Munich Information Center for Protein Sequences (MIPS) the(BIND), the Munich Information Center for Protein Sequences (MIPS), the 
Human Protein Reference Database (HPRD), and the Yeast Proteome 
Database (YPD)



Mapping of cellular interaction networks (cont.)
• Metabolic networks

Experimental methods:
Enzyme characterizations: Protein and DNA microarrays
Metabolite identification: isotope labelingMetabolite identification: isotope labeling
Flux quantification: Mass spectroscopy 
Databases: Kyoto Encyclopedia of Genes and Genomes (KEGG), Ecocyc, MetaCyc

• Transcriptional regulatory networks

Individual studies: Shen-Orr et al. 2002 – E. coli, Guelzim et al 2002, Lee et al. 2002 
- S. cerevisiae,S. cerevisiae, 
Davidson et al. 2002 – sea urchin
Experimental methods: DNA footprinting, chromatin immunoprecipitation (ChIP)
Databases: Transcription Factor Database (TRANSFAC), Regulon Database 
(RegulonDB) KEGG(RegulonDB), KEGG

• Signal transduction networks
Ma’ayan et al. 2005 – mammalian hippocampal neuron
Databases: KEGG, Science STKE



Protein interaction maps now contain 
thousands of nodes and edgesthousands of nodes and edges 

Ito (yeast): 8868 interactions between 3280 proteins
Uetz (yeast): 4480 interactions, 2115 proteins
Gi t (D hil ) 4780 i t ti 4679 t iGiot (Drosophila): 4780 interactions among 4679 proteins
Li (C. elegans):  5534 interactions, 3024 proteins 
Rual (human): 2800 interactions, 8300 proteins

• Although usually tested in a given 
bait/prey setting, protein interactions 
are considered symmetrical

• Many untested interactions – problem

• All networks have giant connected 
tcomponents.

• The topological properties of diverse 
protein interaction networks are 
similarsimilar.

H. Jeong et al.Nature 411, 41-42 (2001)

S.-H Yook, Z.N. Oltvai, A.-L. Barabasi, Proteomics 4, 928 (2004)



Exercise
• Which graph theoretical measures will be useful to analyze 

these networks?

• What information is not incorporated in these protein-
t i i t ti ?protein interaction maps?



Degree distribution of the yeast protein 
networknetwork
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H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)



Degree distribution of C. elegans and D. 
melanogaster protein networks

Drosophila m.
C. elegans

Drosophila m.
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Comparison of yeast interaction networks

Degree distribution Clustering coefficient Connected componentsDegree distribution Clustering coefficient Connected components
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Yook, Oltvai and Barabási, Proteomics 4, 928 (2004)



Average path length larger, short cycles 
more abundant than in randomized networksmore abundant than in randomized networks 

Randomization: swap the endpoints of two edges, node degrees stay the same.



Not all interactions are simultaneously active

Calculate the correlation between the 
expression time-course of genes encoding 
the first neighbors of hub proteins.

Two peaks – two different types of hubs.
Party hubs are inside connected modules 
th t i t t i lt l D t h bthat interact simultaneously. Date hubs
connect different modules.

Han et al,  Nature 443, 88 (2004)



Networks of chemical reactions –usual 
visualization 

Enzymes shown in 
blue, co-enzymes
(small molecules 
necessary for 

ti it ) ienzyme activity) in 
red.
Double arrows 
mean reversiblemean reversible 
reactions.
Reactants, 
products in blackproducts in black,
box indicates that 
node appears in 
several locations.



Representation of chemical reactions+ 
regulationregulation

coenzyme
irreversible 
reaction coenzymereaction

reversible
reaction

positive modulation
divergence

convergence
negative modulation

two reactant
reactions

autoinhibition

E. O. Voit, Computational Analysis of Biochemical Systems



Tri-partite representation of metabolic network

• Node types: 

– Metabolites (substrates or products), open rectangles

– No distinction between metabolites and coenzymes

– Metabolite-enzyme complexes black rectanglesMetabolite-enzyme complexes, black rectangles

– Enzymes, open ovals

• Edges: 

– Substrate to complex or complex to product 

– Symmetrical edges between enzyme and complex



Ex. A traditional representation of the glycolysis pathway is given on the left.
Draw a graph of the pathway.

What improvements can be done 
to this graph?



Reaction Stoichiometry

ite
s)

Reactions

1 2 3

A + B → C + D (1)
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Sij = Number of molecules of substrate i  participating in reaction j

Sij < 0  if substrate i is a reactant in reaction j
Sij > 0  if substrate i is a product in reaction j

i = 1 2 N = # of substrates = # rowsi = 1,2,…,N = # of substrates = # rows
j = 1,2,…,M = # of reactions = # columns



Ex. Represent these reactions by a bi-partite 
graphgraph.

A + B → C + D (1)
A + D → E (2)A + D → E (2)
B + C → F (3)



Network Representation – Substrate Graph

A B C D (1)

Reaction Pathway
A BA B

Rxn-2 Rxn-1 Rxn-3

A + B → C + D (1)
A + D → E (2)
B + C → F (3)

E F

D CD C

Substrate Graph
A B

Substrate NodeOne type of node:

Un-directed edges
A B

E F

Each reaction represented as a 
clique

D CA. Wagner & D. Fell, Proc. Roy. Soc.  268 (2001)



Network Representation – Reaction Graph

A B C D (1)

Reaction Pathway Reaction Graph
1

A + B → C + D (1)
A + D → E (2)
B + C → F (3)

2 32 3

Reaction NodeOne type of node:

Un-directed edges

An edge between two reactions if they share at least one 
substrate in common

Three alternate network representations for theThree alternate network representations for the 
same reaction pathway !



Bi-partite Graph

A B C D E FA B C D E F

1 2 3

Directed 
Substrate Graph

A B

Directed Reaction 
GraphDerived

A B

E F

1

D C

E

2 3

Connect two substrates if there exists a 2 Connect two reactions if there exists atConnect two substrates if there exists a 2-
edge path in the bi-partite graph between 

them

Connect two reactions if there exists at 
least one 2-edge path in the bi-partite 

graph between them



Key Properties of Metabolic Networks

In- and out- degree distributions of 
substrate nodes in the bi partitesubstrate  nodes in the bi-partite 
representation consistent with power-
laws
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Existence of “hub” substrates such 
as ATP, ADP, NADP, NADPH... Most 
(but not all) are carrier metabolites.

a: A. fulgidus d: C. elegans
H Jeong et al Nature 407 651 (2000) b: E. coli e: Average (43 organisms)H. Jeong et al., Nature 407, 651 (2000)



Distances in Metabolic Networks
Paths defined to connect substrates (reactants) to products, the average is 
calculated on the reachable pairs only. 

Distance distribution E. coli

Average degree

In-degree Out-degree

Relatively small and constant 
network diameter across organisms H. Jeong et al., Nature 407, 651 (2000)



Clustering-degree relation in metabolic networks

Average clustering 
coefficient of nodes 
with degree kwith degree k

Open symbols: a 
d l ith thmodel with the same 

degree distribution

Straight line: 1k~)k(C −

Ravasz et al., Science 297, 1551 (2002)



Degree distributions in metabolite and reaction 
networks

Construct non-directed projections to metabolite and reaction networks

Rank vs. degree plot, similar to P(k>K). 
Th d t | l | 1The degree exponent γ=|slope|+1

Undirected substrate network Undirected reaction network

Tanaka, Phys. Rev Lett. 94, 168101 (2005)



Gene regulatory networks

• nodes: mRNAs (ovals) proteins (boxes)nodes: mRNAs (ovals), proteins (boxes)

• edges: interaction or regulation 

• regulatory edges acting on edges – similar to catalysis

• edges can be activating or inhibiting

Often-used simplification: merge all gene products into one.



Out-degree distribution long -
t il d i d di t ib titailed, in-degree distribution more 

limited

indegree outdegree

S. cerevisiaeGuelzim et al,  Nature Genetics 31, 60 (2002)
Lee et al,  Science 298, 799 (2002)



Other features of transcriptional regulatoryOther features of transcriptional regulatory 
networks

• No strongly connected component in E. coli and yeast - a 
unidirectional regulation mode. 

• The subgraphs found by following the paths that start from 
non-transcriptionally regulated genes have relatively little 

l di ti t i t l i l t d t i iti toverlap - distinct environmental signals tend to initiate 
distinct transcriptional responses. 

• The source – sink distances are small in networks, 
e.g. the longest regulatory chain has only four (in E. coli) 
and five (in S cerevisiae) edgesand five (in S. cerevisiae) edges. 



Regulatory motifs

Regulators (TFs), blue circles
Genes, red rectangles
Dashed edges mean translation

Feedforward loop:p
convergent direct and
indirect regulation; noise
filterfilter
Single input motif:
one TF regulates
several genes; temporalseveral genes; temporal
program
Multi-input motif: combinatorial 
regulation

Lee et al,  Science 298, 799 (2002)
regulation



Regulatory themes R: Transc. reg
P: Prot. interaction
H: Seq. homology
X: Correlated expression

Feed-forwardFeed-forward

C i tiCo-pointing

Co-regulation

Protein complex

Zhang et al,  J. Biol 4, 6 (2005)

p



Condition-dependent  transcription sub-networks

Endogenous
•Complex TF combination

Exogenous
•Simple TF combination

•Few targets per TF
•Long path length
I t t d TF

•Many targets per TF
•Short path length
F i t t d TF•Inter-connected TF

•Many FFL
•Few inter-connected TF
•Single input motifs Luscombe et al,  

Nature 431, 308 (2004)



Ex. Draw a network corresponding to this verbal 
description of a signaling pathway.

– A protein ligand FASL binds to the receptor FAS. The 
interaction activates intracellular protein FADD, which 
in turn activates the proteolysis of procaspase-8 givingin turn activates the proteolysis of procaspase-8, giving 
active caspase-8. Caspase-8 leads to the proteolytic 
activation of caspase-3, activating programmed cell 
d hdeath.



ABA signal transduction network

Red: enzymesy
Blue: transport
Orange: small 
molecules
Green: sign transdGreen: sign. transd.
proteins
Black points:
unknown 
intermediary
nodes

Li, Assmann,
Albert,
PLoS BiologyoS o ogy
2006



Signal transduction network of the 
hippocampal CA1 neuron

Data (binary interactions) collected form the experimental literatureData (binary interactions) collected form the experimental literature
System of interacting cellular components involved in phenotypic 
behavior 

Edges can be directed or
undirected (neutral)
Directed edges are activating
or inhibitory

In and out degree distribution 
broad tailedbroad tailed

Highest degree nodes:
MAPK CaMKII PKA and PKC

Ma’ayan et al, Science 309, 1078 (2005)

MAPK, CaMKII, PKA and PKC 



Signal propagation as links per step starting at 
a specific ligandp g

LIGAND

CHEMICAL 
REACTIONS

STEP 
1

RECEPTOR RECEPTOR 

ION CHANNEL

1

STEP 2

CENTRAL 
SIGNALLING

ION CHANNEL ION CHANNEL

Fast change

Permanent change



Motif abundance, homeostasis, and plasticity, , p y

Feedback loops bifans

Feed-forward loops scaffolds

Rapid-change ligands engage more motifs in fewer steps;

At l t FFL th t d t l t t FBL

Motif counts increase linearly with steps for all regulators preferential

At early steps, more FFL than expected; at later steps, more +FBL

than expected

Motif counts increase linearly with steps for all regulators – preferential
paths to key effectors;
Positive and negative motifs are balanced for glutamate and BDNF  -
homeostasis;homeostasis;
More positive than negative FBL and FFL in NE – long- term info storage



Intercellular network

Positive
feedbackfeedback -
mediated
by pro-infl.
cytokinescytokines

Double
negativeg
feedback

Self-loops

Thakar et alThakar et al 
PLoS Comp 
Bio 2007



Graph analysis uncovered commonGraph analysis uncovered common 
architectural features of cellular networks

(Weakly) Connected, 
short path length, 
heterogeneous (approximately power law degree distribution), 
conserved interaction motifs

Can you think of reasons and/or consequences of these features 
i dditi t h t l d t lk d b t?in addition to what we already talked about? 



Importance of a dynamical understandingp y g
Only subsets of the genome-wide interaction networks are active in a
given external condition

Han et al. 2004 – dynamical modularity of protein interaction networks
Luscombe et al. 2004 – endogeneus and exogeneus transcriptional
subnetworkssubnetworks

Network topology needs to be complemented by a description of
network dynamics – states of the nodes and changes in the statey g
First step - pseudo-dynamics: propagation of reactions in
chemical(interaction) space, starting from a source (signal)

Complete dynamical description is only feasible on smaller networks
(modules):
Signal transduction in bacterial chemotaxis, NF-kB signaling module, g , g g ,
the yeast cell cycle, Drosophila embryonic segmentation



Experimental observations

Inference methods
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Graph theoretical analysisDynamic modeling

Hypothesis generation
Parameter estimation
Time courses
Predictions

Network topology


