
Network models
Properties common to many large-scale networks, independently of 
their origin and function:

1 Th d d b t di t ib ti d i1. The degree and betweenness distribution are decreasing 
functions, usually power-laws. 
2. The distances scale logarithmically with the network size

scale - free
g y

klog
Nlogl ≈ small world

3. The clustering coefficient does not seem to depend on the
network size, and is larger than the clustering coefficient  of 
comparable random graphscomparable random graphs

There are two model families proposed to explain these properties:
Small world network models and scale-free network models.



Benchmark 1: regular lattices

One-dimensional lattice:  constC constkNl ==≈  ,   ,

2/1NLl ≈≈

Two-dimensional lattice: 
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The average path-length varies as 
C t t d ( di ti b ) t t l t i

DNl /1≈

D-dimensional lattice: 

Constant degree (coordination number), constant clustering 
coefficient.



Benchmark 2: random graph theoryg p y

Erdös-Rényi algorithm - Publ. Math. Debrecen 6, 290 (1959)

• fixed node number N
• connecting pairs of nodes• connecting pairs of nodes 
with probability p
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Path length and order in real networksg
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Real networks have short distances like random graphs yet show 
signs of local order. 



Small-world networks
Real networks resemble both regular lattices and random graphs –
perhaps they are in between.

Watts-Strogatz model - D. Watts, S. Strogatz, Nature 393, 440 (1998)

• lattice with K neighbors   
• rewire edges with 
probability pprobability p
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Is there a regime with small l and large C?



Transition from a lattice to a small world

lattice         small world          random

There is a broad interval of p over which                        but    )0()( CpC ≅ )1()( lpl ≅)()( p



The onset of the small-world behavior 
depends on the system size

d i th di i f
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The transition point depends on the rewiring probability,
the size of the network and the average degree.
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These results cannot be directly compared to most real networks 
because the rewiring probability p is not known.because the rewiring probability p is not known.



Degree distribution of a small-worldDegree distribution of a small world 
network 

Rewiring does not change the average degree, but 
modifies the degree distribution.

P(k) depends on the rewiring parameter p, but is 

Kk =

always centered around <k>.

Degree distribution similar to that of a random graph, with 
exponentially small probability for very highly connected nodes.



Ex. 1
A i t f th W tt St t d l dd d d tA variant of the Watts-Strogatz model adds random edges to a 
regular lattice. Start with a 1D lattice where every node has degree 
K . For each existing edge of a node, add an edge with a probability 
p The endpoint of the edge is selected randomly from all otherp. The endpoint of the edge is selected randomly from all other 
nodes. How many edges do you expect the graph will have after 
edge addition?

Ex. 2 
How do you expect the degree distribution will look like after edge
addition? Will it be symmetrical or not?y

2/NK

iii nmKk ++=
m2/Kmm

2/K )p1(pC)m(P −−≅

n2/pNKn
n

2/pNK N
11

N
1C)n(P

−

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛≅

starting point endpoint

Minim m K peak K+pKMinimum: K, peak: K+pK



The scale-free degree distribution 
i di t h t t lindicates a heterogeneous topology 

New models are needed to reproduce this feature.p



We need to uncover the mechanisms 
ibl f th l f P(k)responsible for the scale-free P(k)

• random graphs
Static ( b f d fi d)• small-world networks

• scale-free random graphs

Real networks continuously change

Static (number of nodes fixed)

Real networks continuously change

• random graphs
Homogeneous

• small-world networks
Homogeneous

Scale-free degree distribution - the nodes are not equivalent

We need to model the evolution of networks, not just their topology.



A simple model of network assembly and 
evolution (BA model)evolution (BA model) 

Start with a small seed of m0 nodes and m0(m0-1)/2 edges.

• growth: a node and m edges added at every step• growth: a node and  m edges added at every step

• preferential attachment:
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Price, J. Amer. Soc. Inform. Sci. 27, 292 (1976)
Barabási and Albert Science 286 509 (2000)Barabási and Albert, Science 286, 509 (2000)



General properties of the network

• nr. of nodes: tmN 0 +=
)(

• nr. of edges: tm
2
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• average degree:

• degree distribution:
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• degree distribution:
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Although the network grows, the degree distribution becomesAlthough the network grows, the degree distribution becomes 
stationary.



Analytical determination of P(k)
The degree of “old” nodes increases by acquiring new 
edges. The probability of an old node with degree ki receiving 

d ia new edge is
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Choices: 
follow the increase in the number of nodes with 
degree ki (rate equation approach)
follow the increase in time in ki (continuum theory)



Rate equation approach

Change in average number of nodes with degree k
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Degree distribution

The rate equation leads to a recursive relationship between P(k) 
and P(k-1)

m,k2
)k(kP)1k(P)1k()k(P δ+−−−

=

⎪

⎪⎪
⎨

⎧ >−
+
−

=
mfor kkP

k
k

kP
2

    )1(
2
1

)(

Leads to 3)1(2)( −+ kmmkP

⎪
⎪
⎩

=
+

mfor k
m

                 
2

2

Leads to 3

)2)(1(
)( ≈

++
= k

kkk
kP

Stationary power law with an exponent 3=γ

P. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)



E 1Ex. 1
Start from a seed of two nodes connected by an edge. At each step, 
add a new node, and connect it by a single edge to a preexisting 
nodenode. 

Let the probability of selection be directly proportional with the 
degree of the “old” node. (Is there an easy way to do this?)degree of the old  node. (Is there an easy way to do this?) 

Continue growing the graph until you reach 15 nodes. Describe the 
graph (average degree, degree distribution,g p ( g g g
clustering coefficient, connectivity, maximum distance).

Ex. 2 
How will the properties of the graph change if at each step a new 
node and two new edges are added?



Model A

growth                  preferential attachment

Π(ki) : uniform
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Model B

growth                  preferential attachment

Fixed N, edges connect a randomly selected node with
a preferentially selected node
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P(k) : power law (initially) ⇒ GaussianP(k) : power law (initially) ⇒ Gaussian



BA algorithm with directed edges g g
New edges are directed from the new to the old nodes
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The degree exponent of the directed scale-free network is 2 !



How do the other network measures 
ith l t k ?compare with real networks?

Average path length Clustering coefficient

N
NC

2)(ln
≈

N
Nl

lnln
ln

≈

Average distances smaller in the BA model than in equivalent random graphs

Nlnln

Average distances smaller in the BA model than in equivalent random graphs.
but not as small as in scale-free random graphs.

Cl t i ffi i t d ith t k i
Cohen et al, in Handbooks of Graphs and Networks (2003)
Clustering coefficient decreases with network size.

B. Bollobás and O. Riordan, in Handbooks of Graphs and Networks (2003)



Evolving network models Evolving network models 
The scale-free model is only a minimal model.
Makes the simplest assumptions:

linear growth m2k =• linear growth

• proportional preferential attachment

m2k =

ii kk ∝Π )(

Does not capture
variations in the shape of the degree distribution
variations in the exponent of the power-law regionp p g
the size-independent clustering coefficient

Hypothesis: the basic mechanisms need to be augmented
by the incorporation of

addition of edges without new nodes 
edge rewiring, removal 

d lnode removal
constraints or optimization principles



PPreferential attachment in real networks 
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neurosci.
actor collab.



Consequences of nonlinear preferential 
tt h tattachment

1  ,)( ≤+≈Π ααkAk

1. Sublinear preferential attachment leads to a stretch-

A - initial attractiveness

1. Sublinear preferential attachment leads to a stretch
exponential degree distribution.

( )β)kk(exp)k(P 0−≈

2. Initial attractiveness only shifts the degree exponent.
P. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)

A
directed network, starting point is 2m

A2in +=γ

Dorogovtsev Mendes Samukhin Phys Rev Lett 85 4633 (2000)Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)



Mechanisms for preferential attachment 

1. Copying mechanism
directed network

l t d d d f thi dselect a node and an edge of this node
attach to the endpoint of this edge

2 Walking on a network2. Walking on a network
directed network
the new node connects to a node, then to every
first second neighbor of this nodefirst, second, … neighbor of this node

3. Attaching to edges
select an edgeg
attach to both endpoints of this edge

4. Node duplication
duplicate a node with all its edges
randomly prune edges of new node



Growth constraints and aging cause 
t ffcutoffs 

• Finite lifetime to acquire 
new edges

ν−−∝∏ )()( iii ttkk• Gradual aging: 

L. A. N. Amaral et al., PNAS 97, 11149 (2000)

∏ )()( iiig g

νγ   withincreases 

S N Dorogovtsev and J F F Mendes Phys Rev E 62 1842 (2000)S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842 (2000) 



Additional processes also change the 
d tdegree exponent 

γ−+≈ )()( 0kkkP ),,(, mqpfk0 =γ• mp new edges
• mq edges rewired

R. Albert, A.-L. Barabási, Phys. Rev. Lett  85,  5234 (2000)

• c edges added or removed

12i +=γ

S. N. Dorogovtsev, J. F. F. Mendes, Europhys. Lett. 52, 33 (2000)

c21
2in +
+γ



A model with high clustering coefficient
• Each node of the network can be either active or inactive.
• There are only m active nodes in the network at any instance.
1 Start ith m acti e completel connected nodes1. Start with m active, completely connected nodes
2. At each timestep add a new node (active) that connects to m

active nodes.
1)()( kk3. Deactivate one active node 1)()( −+∝ jid kakP
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K. Klemm and V. Eguiluz, Phys. Rev. E 65, 036123 (2002)



A deterministic scale-free model
• Start with a completely connected graph with five nodes (one 

“central” , four peripheral
• Make four copies of the graph keep the original in the center• Make four copies of the graph,  keep the original in the center. 

Connect the four peripheral nodes of each copy to the central 
node of the original.

• Make four copies of the graph again connect peripheral• Make four copies of the graph, again connect peripheral 
nodes to the central node. 

5-clique 



A deterministic scale-free model

5-clique 

connect peripheries 
to central node 

E. Ravasz, A.-L. Barabasi, Phys Rev E 67, 026112 (2003)



E 1Ex. 1
How does the number of nodes increase as a function of time steps?

Ex. 2
How does the degree of the central node increase in time?

Ex. 3 
How does the number of edges increase as a function of time steps?g p

Ex. 4 
Can you identify the highest degree nodes?



Properties of the modelp

10
-1

10
0

10
-1

10
0

(a)
10

0

(c)

10
-4

10
-3

10
-2

10

(k
)

10
-4

10
-3

10
-2

10

(k
)

10
-2

10
-1

C
(N

)

-7

10
-6

10
-5

10
-4

P
(k

-7

10
-6

10
-5

10
-4

P
(k

10
-3

10

C
(

10
0

10
1

10
2

10
3

10
4

k

10
-8

10
-7

10
0

10
1

10
2

10
3

10
4

k

10
-8

10
-7

10
2

10
3

10
4

10
5

N

10
-4

Degree distribution

Cl stering coefficient independent of net ork si e

341 ln/lnk)k(P −−∝

60CClustering coefficient                       independent of network size60.C ≈



Hierarchical structure
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E. Ravasz et al., Science 297, 1551 (2002)





Lessons learned from evolving network 
d lmodels 

1 Th i i l t h t i i ll t k1. There is no universal exponent characterizing all networks.

2. The origins of the preferential attachment might be system-
dependentdependent.

3. It is generally true that networks evolve.

4. Modeling real networks:
• identify the processes that play a role
• measure their frequency from real dataq y
• develop dynamical models that capture these 

processes 


